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Recap: Constructing Vector Spaces

Informal algorithm for constructing vector spaces:

Select a corpus

Select n target words which will be represented as vectors in the space;

Select k dimension words (they are found around target word in the context window)

compute k × n cooccurrence matrix

Compute (PPMI): weighted cooccurrence matrix

Compute similarity of any two focus words as the cosine of their vectors
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Embedding Learning Algorithms

Singular Value Decomposition (SVD)
Also called Latent Semantic Indexing
Factorization of cooccurrence matrix
Least squares objective optimized by power method
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Models used to learn word embeddings
Optimized by gradient descent
Skip-gram model predicts surrounding words (context) given a target word
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Word2Vect and Friends

Mikolov et al, 2013: Distributed Representations of Words
and Phrases and their Compositionality

Input: a large text corpus, V , d
V : a predefined vocabulary
d: dimension of word vectors (e.g., 300)
W : embedding matrix of size V × d
Text corpora: Wikipedia + Gigaword 5
(6B), Twitter (27B), Common Crawl (840B)

Output: f : V → Rd

https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
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Representing words as discrete symbols

How can we represent words which are discrete symbols as vectors?

Words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 1 0 0 0]
hotel = [0 0 0 0 0 0 1 0 0 0 0 0 0]

Vector dimension is the number of words in the vocabulary (e.g., 500,000).

Skip-gram treats one-hot vector as an index.
When a one-hot vector is multiplied by the embedding matrix W , it effectively
extracts the corresponding row from W
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One-hot vector example

One-hot vector: x =


0
0
1
0
0



Embedding matrix: W =


w11 w12 w13
w21 w22 w23
w31 w32 w33
w41 w42 w43
w51 w52 w53



Multiplication:

xTW =
[
0 0 1 0 0

]


w11 w12 w13
w21 w22 w23
w31 w32 w33
w41 w42 w43
w51 w52 w53



=
[
w31 w32 w33

]
Result: The third row of W is
selected as the word embedding.
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Word2Vec and Friends
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Skip-gram: Main Idea

Word2Vec is an iterative method. Its main idea is as follows:

take a huge text corpus;

go over the text with a sliding window, moving one word at a time. At each step, there
is a central word ∈ V word and context ∈ V;

for the central word, compute probabilities of context words;

adjust the vectors to increase these probabilities.
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Skip-gram

The idea: we want to use words to predict their context words.
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The idea: we want to use words to predict their context words.
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How do we calculate the probabilities P(wt+j|wt, θ)?

We have two sets of vectors for each word in the vocabulary

vc ∈ Rd: embedding for target word c
uo ∈ Rd: embedding for context word o

Use dot product to measure the probability of context word o given center word c:

This is the softmax function!
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Back to our example
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How do we train the Skip-gram model?

Likelihood = L(θ) =
T∏

t=1

∏
−m≤j≤m,j ̸=0

P(wt+j|wt, θ),

T is number of words in the training corpus.
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How do we train the Skip-gram model?

We rely on gradient descent (recall the lecture on logistic regression).

In practice, we optimize one word at a time:
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How do we train the Skip-gram model?

Jt,j(θ) = −log P(cute|cat) =

− log

(
exp uT

cutevcat∑
w∈Voc

exp uT
wvcat

)

−
(

log exp uT
cutevcat − log

∑
w∈Voc

exp uT
wvcat

)
Since log exp(x) = x −uT

cutevcat + log
∑

w∈Voc
exp uT

wvcat

Note which parameters are present at this step:
from vectors for central words, only vcat

from vectors for context words, all uw for all words in the vocabulary.
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How do we train the Skip-gram model?
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How do we train the Skip-gram model?

Get loss for this one step evaluate the gradient, make an update
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Negative Sampling: Making learning more efficient
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Negative Sampling: Making learning more efficient

Positive Examples Negative Examples

We have now converted negative sampline to binary classification:
predict “+” for (central, real context) pairs, and “−” for (central, random context).
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How do we select negative samples?

The basic idea is to select random words based on their (unigram) frequency in a corpus.
But can we do better?

“Flatten” the unigram distribution to make sure infrequent words get sampled
(recall Zipf’s distribution)

Don’t generate compatible contexts

Make sure you generate “hard” negative examples, to learn informative word
representations

What happens when training has finished, what are the embeddings?

We learn two embeddings per word, vc, uo, we can just add them or throw away the
context embeddings uo.
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Evaluation

Extrinsic Evaluation: Let’s plug these word
embeddings into a real NLP system and see
whether this improves performance. Could
take a long time but still the most important
evaluation metric

Intrinsic Evaluation: Evaluate on a specific/intermediate
subtask which is fast to compute and not clear if it really
helps the downstream task.
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Intrinsic Evaluation: Word Analogy

semantic: v(king)− v(man) + v(woman) ≈ v(queen)
syntactic: v(walking)− v(swimming) + v(swam) ≈ v(walked)

More examples at http://download.tensorflow.org/data/questions-words.txt

http://download.tensorflow.org/data/questions-words.txt 


31/31

Summary for today

Neural embeddings can be efficiently learned from large collections of unannotated
texts (‘self-supervision’)
Many algorithms, and important hyperparameter choices (windows sizes, numbers of
negatives samples)
Useful in practice and have some intriguing properties
Preferable over raw count-based method but:

- how do we handle multiple senses? (ambiguity)
- how do we encode longer spans of text? (compositionality)

Check out Lena Voita’s online resource – NLP class for you:
https://lena-voita.github.io/nlp_course.html

https://lena-voita.github.io/nlp_course.html

