Foundations of Natural Language Processing

Lecture 10: Word Embeddings

Mirella Lapata
School of Informatics
University of Edinburgh

mlap@inf.ed.ac.uk

(]
Edinburgh
University of Edinburgh
Naturalllllf]:rrl:uz;e Prolcr:leslgliﬁg N LP
Slides based on content from: Philipp Koehn, Alex Lascarides, Sharon Goldwater, Shay Cohen,
Khalil Sima’an, Ivan Titov, Lena Voita

Recap: Constructing Vector Spaces

Informal algorithm for constructing vector spaces:
m Select a corpus
m Select n target words which will be represented as vectors in the space;
m Select k dimension words (they are found around target word in the context window)
m compute k x n cooccurrence matrix
m Compute (PPMI): weighted cooccurrence matrix

m Compute similarity of any two focus words as the cosine of their vectors

Embedding Learning Algorithms

Singular Value Decomposition (SVD)
m Also called Latent Semantic Indexing
m Factorization of cooccurrence matrix
m Least squares objective optimized by power method

Embedding Learning Algorithms

Singular Value Decomposition (SVD)
m Also called Latent Semantic Indexing
m Factorization of cooccurrence matrix
m Least squares objective optimized by power method
columns represent context
potential contexts word vectors
i) vecrors

- | v \

\

words ~ §N X N X ‘ H U _H

\
|

Embedding Learning Algorithms

Singular Value Decomposition (SVD)
m Also called Latent Semantic Indexing
m Factorization of cooccurrence matrix
m Least squares objective optimized by power method

Word2Vec
m Models used to learn word embeddings
m Optimized by gradient descent
m Skip-gram model predicts surrounding words (context) given a target word

Embedding Learning Algorithms

Word2Vec
m Models used to learn word embeddings
m Optimized by gradient descent
m Skip-gram model predicts surrounding words (context) given a target word

Word2Vect and Friends

Input: a large text corpus, V, d ~0.224 —00;}204
m V' a predefined vocabulary Veat = _001380 vdog = | _0.200
m d: dimension of word vectors (e.g., 300) 0.276 0.329
m W: embedding matrix of size V x d
m Text corpora: Wikipedia + Gigaword 5 0.234 0.290

(6B), Twitter (27B), Common Crawl (840B) , ~_ 0.266 Vlanguage = —0.441
0.239 0.762

output: f : V — R? ~0.199 0.982

https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546

Representing words as discrete symbols

How can we represent words which are discrete symbols as vectors?

Words can be represented by one-hot vectors:

motel = 0000000001000
hotel = (0000001000000

m Vector dimension is the number of words in the vocabulary (e.g., 500,000).

m Skip-gram treats one-hot vector as an index.

m When a one-hot vector is multiplied by the embedding matrix W it effectively
extracts the corresponding row from w

One-hot vector example

0
0
One-hot vector: x= |1
0
0

Wit Wiz wWi3
w21 Wi W23
Embedding matrix: W= (w31 ws ws3
W41 W42 W43
W51 Wsy Ws3

One-hot vector example

Multiplication:
w11 Wiz Wi3

w21 w22 W23
XTW:[O 010 0] w31 W3z W33
W41 W42 W43
W51 W52 Ws3

0
0
One-hot vector: x= |1
0
0

w11 Wi w13
W21 W22 W23
Embeddlng matrix: W= [w3; w3 ws
W41 W42 W43 Result: The third row of W is
W51 Ws3 Ws3 selected as the word embedding.

=[ws1 wxn wsy]

Word2Vec and Friends

I saw a cute grey cat playing in the garden

:;:fflL; - cu*r\e\ grey plf:/ymg i
- . — — N — —
cute grey playing in ceat
in in \:I\ sum
[cute cute | — |
/ i — =
grey grey
playing playing
v u u v
Skip-Gram: from central predict context CBOW: from sum of context predict central
(oneatatime)

Skip-gram: Main Idea

Word2Vec is an iterative method. lts main idea is as follows:
m take a huge text corpus;

m go over the text with a sliding window, moving one word at a time. At each step, there
is a word € V word and context € V;

m for the word, compute probabilities of context words;

m adjust the vectors to increase these probabilities.

Skip-gram

The idea: we want to use words to predict their context words.

.

P(wi_z|we) P(We—1lwe) PWesalwe) P(Wegz|lwe)

I saw a cute grey cat playing in the garden

Wiz Wir We Wipp Wiao

central
word

Skip-gram

The idea: we want to use words to predict their context words.

P(We—|we) P(We—q|we) P(Weyalwe) P(Weia|wy)
I saw a cute grey cat playing in the garden
W2 Wiy W Wy Wes2

central
word

Skip-gram

The idea: we want to use words to predict their context words.

P(w_a|we) P(We—q|we) PWeya|lwe) P(Weiz|we)
I saw a cute grey cat playing in the garden
W2 Wi1 Wy Wi+1 Witz

central
word

Skip-gram

The idea: we want to use words to predict their context words.

P(wi_o|lwe) P(We_q|wi) P(Wepa|we) P(Wega|we)

I saw a cute grey cat playing in the garden

Wi—2 Wi-1 Wy Wet1 Wiz

central
word

How do we calculate the probabilities P(w,;w;, 0)?

m We have two sets of vectors for each word in the vocabulary

Ve € Rd : embedding for target word
u, € RY: embedding for context word O

m Use dot product to measure the probability of context word O given center word

Dot product: measures similarity of o and ¢
« Largerdot product = larger probability
T
exp(u 1)

T -
2:WEV exp(uw U(:)
~~__ Normalize over entire vocabulary
to get probability distribution

P(olc) =

How do we calculate the probabilities P(w,;w;, 0)?

m We have two sets of vectors for each word in the vocabulary

Ve € Rd : embedding for target word
u, € RY: embedding for context word O

m Use dot product to measure the probability of context word O given center word

This is the softmax function!
Dot product: measures similarity of o and ¢

« Largerdot product = larger probability
T
exp (v)

T -
2:WEV exp(uw U(:)
~~__ Normalize over entire vocabulary
to get probability distribution

P(olc) =

Back to our example

P(“’fl l"{:) P(“S(leﬂ'?{t) P(“-c:u{e.'lr"u) P(“'\d}'&'}fl["ce)

I saw a cute grey cat playing in the garden

Wiz W1 W Wiy Wi

saw
cute

grey

Back to our example

P(“sa L-vll"'c'u!c.') P(“uli"c'ute) P(“ﬁf'&'}*l["ueﬁc’) P(“m! |[’J¢'u{c’)

I saw a cufte grey cat playing in the garden

W2 Wea We Wip Wiy

Saw

cute

cat
grey

Back to our example

P(l-fﬁll-fr]r:’_y‘)P(“r?utf’li’}ya'f’r) P(“rrrtrllfrp'rrly*) P(“-pm.)-'r'n.gl]-",r';rv_;-')

I saw a cute grey cat playing in the garden

Wiz Wi Wi Wiyl Wti2
d
cute
cat
grey .
playing

Back to our example

P(“mneh%ut) P(Umfyh%ﬂd P(“pMymgh%nt)P(”nJvau)

I saw a cute grey cat playing in the garden

Wiz Wi Wi W1 Wiia
in
cute

cat
grey
playing

v u

Back to our example

P(”grﬂ_}*II"p.'r'aj-'m,.';r) P(”f‘m|!"’g:!r:_1=."n_{}) P(“f’n|r']}l."r:._\-."n_q) P(T-fm;-?lU}J!f‘a_u'n,rjr)

I saw a

cute grey cat playing

playing

Wi_o

l’1{’{ l

w t

Uu

in the garden

Wiv1 Wig2

cat
grey

Back to our example

P(“g}r&?_lfl["‘m) P(ucaelvin) P(uinlvin) P(uene|vin)

I saw a cute grey cat playing in the garden

We-2 We-1 We Wi Wiy

the

in

cat

playing
garden

v u

How do we train the Skip-gram model?

Likelihood = L(8) = [| P(w. i, 0),
t=1 —m<j<mj#0

T
1 1
Loss=J(0) = —?logL(B) = ——Z Z log P(w, . i|w,,0)

t=1-msj<m,

0
agrees with our > goovertext with a sliding compute probability of the
plan above window context word given the central

T is number of words in the training corpus.

How do we train the Skip-gram model?

We rely on gradient descent (recall the lecture on logistic regression).
g = 6°4 — aVyJ(6).

In practice, we optimize one word at a time:

- z Z log P(w; j|wy, Z Z J.3(0)

=1 —m<j<m,j#0 =1 —m<j<m,j#0

How do we train the Skip-gram model?

Jij(0) = —log P(cute|car) =

Note which parameters are present at this step:
m from vectors for ceniral words, only v,
m from vectors for context words, all i, for all words in the vocabulary.

How do we train the Skip-gram model?

1j(0) = —log P(cure|car) = —log (z"p)

we Voc

Note which parameters are present at this step:
m from vectors for ceniral words, only v,
m from vectors for context words, all i, for all words in the vocabulary.

How do we train the Skip-gram model?

Jij(0) = —log P(cutelcar) = —log (%)

we Voc

(1ogexpu“,,(v —log S expul (“,)

weVoc

Note which parameters are present at this step:
m from vectors for ceniral words, only v,
m from vectors for context words, all i, for all words in the vocabulary.

How do we train the Skip-gram model?

1j(0) = —log P(cure|car) = —log (z"p)

we Voc

T T,
- (10gexpuw,€\w, —log > expu“,u(,,)

weVoc

Since logexp(x) = x —ul, v +log ST expulvi,
weVoc
Note which parameters are present at this step:
m from vectors for ceniral words, only v,
m from vectors for context words, all i, for all words in the vocabulary.

How do we train the Skip-gram model?

1. Take dot product of v, with all u 2.exp 3.sumall

T T
Uy1Vcat — exp(uwlvcat)

T T
1 uwsVeat — €xp(UpaVcat) \
I . T
| - exp(uwvcat)
] — r — Z
te cuteVcat exp(UecyreVeat) WEV

N N ® ©)
T T
uWTvaat - exp(uwnvcat)

jt,j (9) = _.L“'LTH{L’ Veat + log Z eXp(UE:.r [’,L'LEI)
! wev

L J

@ (2)

How do we train the Skip-gram model?

Get loss for this one step evaluate the gradient, make an update
B 51C)
jtj(a) “LM[L’ Ueat +]0g Z exp(“;{' Unul) cat” cat avcat
B weV
dJ;,;(0)

@ @ uW:=uW—aTVWEV

ualvcat |
W | dECrease

o — increase

decrease

T
UwnVcat

Negative Sampling: Making learning more efficient

Dot product of v.,;: Dot product of v,,;:
e with 1., -increase, * with 1, -increase,
+ with all other u - decrease + with a subset of other u - decrease

Negative samples: randomly
selected K words

: /T
p Uw1Veat 1] Uwy Veat
J—— ., | decrease / Lt | decrease
/ —— waVeat /| Wy, Veat

cum increase c‘“eJ:' increase
cat k| : car R I uly, Vear
: } decrease TIY”H “ } decrease
u‘T‘m cat b] UwiVeat
v u v u
Parameters to be updated: Parameters to be updated:
Veat * Vcat
* uy forallwin |\V/|+1 vectors * Ucyte and uy, forw K + 2 vectors

the vocabulary in K negative examples

Negative Sampling: Making learning more efficient

Jij(0) = —log cr(ug;,_iﬁz; at) — Z log(1 — a(uzzr,_..,,(.-))
/ we{wjy,. . -, Wig }
o(z) = 14:«:% T/T]

the logistic sigmoid function

We have now converted negative sampline to binary classification:
predict “+” for (central, real context) pairs, and “—” for (central, random context).

Negative Sampling: Making learning more efficient

Positive Examples Negative Examples
Jij(0) = —logo(u.y,.ven) — Z log(1 — o(u]v..:))
/ we{wjy,. . -, Wig }
1 - I
O'(:L') - 1+e *

the logistic sigmoid function

We have now converted negative sampline to binary classification:
predict “+” for (central, real context) pairs, and “—” for (central, random context).

How do we select negative samples?

The basic idea is to select random words based on their (unigram) frequency in a corpus.
But can we do better?

m “Flatten” the unigram distribution to make sure infrequent words get sampled
(recall Zipf’s distribution)

m Don’t generate compatible contexts

m Make sure you generate “hard” negative examples, to learn informative word
representations

What happens when training has finished, what are the embeddings?

How do we select negative samples?

The basic idea is to select random words based on their (unigram) frequency in a corpus.
But can we do better?

m “Flatten” the unigram distribution to make sure infrequent words get sampled
(recall Zipf’s distribution)

m Don’t generate compatible contexts

m Make sure you generate “hard” negative examples, to learn informative word
representations

What happens when training has finished, what are the embeddings?
We learn two embeddings per word, v., u,, we can just add them or throw away the
context embeddings u,,.

Evaluation

Extrinsic Evaluation: Let’s plug these word

embeddings into a real NLP system and see ML model)

whether this improves performance. Could

take a long time but still the most important 3 , ‘ -3 23
0 P (L3) () Gon) () (1%)

evaluation metric
I don’t like this movie

Intrinsic Evaluation: Evaluate on a specific/intermediate
subtask which is fast to compute and not clear if it really
helps the downstream task.

Intrinsic Evaluation: Word Analogy

Italy
Canada spain @
@ ® 4
Turkey 1 Rome
- Ottawa Madrid Germany
3]
Ankara .Russj'a .
Berlin
]
e nRey Vietnam lapan
swimming @ i thina
53 01:' 5
@‘_ Tokyo e
Hanoi Beijing
Male-Female Verb Tense Country-Capital

semantic: v(king) — v(man) + v(woman) ~ v(queen)
syntactic: v(walking) — v(swimming) + v(swam) ~ v(walked)
More examples at http://download.tensorflow.org/data/questions—-words.txt

http://download.tensorflow.org/data/questions-words.txt

Summary for today

m Neural embeddings can be efficiently learned from large collections of unannotated
texts (‘self-supervision’)

m Many algorithms, and important hyperparameter choices (windows sizes, numbers of
negatives samples)

m Useful in practice and have some intriguing properties

m Preferable over raw count-based method but:

- how do we handle multiple senses? (ambiguity)
- how do we encode longer spans of text? (compositionality)

Check out Lena Voita’s online resource — NLP class for you:
https://lena-voita.github.io/nlp_course.html

https://lena-voita.github.io/nlp_course.html

